

Grade 8 Mathematics Worksheet

Data handling and sampling

Questions:

1. The following information is given regarding the body fat index for a sample of female and male learners that attend your local gym:

Medical category	Body Fat index Class upper Limit		Frequency	
	Female	Male	Female	Male
Athletical ly fit	20	13	3	9
Physically fit	24	17	15	11
Acceptabl e	31	20	24	10
Borderlin e Obese	39	25	12	9
Medically Obese	51	50	5	12

- a) What is the sample size of the population represented in these tables?
- b) Calculate the relative frequencies for each of the categories and record your data separately for females and males.
- c) What measure can you use to check if your calculations in (b) are accurate?
- d) What is the probability that a female learner will have a body mass index of between 10 and 18 percent?
- e) Calculate the most probable result for female learners, and also list the probability of the result occurring by using your relative frequencies.
- f) Which of the male or female learners have a larger possibility of being obese? Explain.
- g) Out of a possible sample of 2 000 males, how many will be borderline obese?

Grade 8 Mathematics Worksheet

Solution

- 1. a) The sample size is indicated by the figures in the frequency column. So there are 12 + 26 + 34 + 21 + 17 = 110.
 - b) Relative frequencies:

Medical	Frequency		Relative Frequency	
category	Female	Male	Female	Male
Athletical ly fit	3	9	$\frac{3}{110}$	9 110
Physically fit	15	11	15 110	11 110
Acceptabl e	24	10	24 110	10 110
Borderlin e Obese	12	9	12 110	9 110
Medically Obese	5	12	<u>5</u> 110	12 110

- c) You can add all the probabilities. The sum must be 1, otherwise there has been a calculation error. So $\frac{3}{110} + \frac{9}{110} + \frac{15}{110} + \frac{11}{110} + \frac{24}{110} + \frac{10}{110} + \frac{12}{110} + \frac{9}{110} + \frac{5}{110} + \frac{12}{110} = \frac{110}{110} = 1$. It is therefore calculated correctly.
- d) The upper limit for this class is 20. So assuming that the first category starts from 0 to an upper limit of 20, then only 3 female learners fit this category. Thus the probability will be $\frac{3}{110} = 0.027$. This is less than 3%.
- e) The most probable result for females will be a body fat mass index that is more than 25 and up to 31. The relative frequency here is $\frac{24}{110} = 0,22$ correct to two decimal places.
- f) The males have more of a tendency towards the obese categories. 12 are medically obese, and 9 are borderline obese. That makes for a total of 21 males. Of the females, 5 are medically obese and 12 are borderline obese. That is a total of 17 females that fall in the obese categories. Of the men, there are 4 more in these categories.
- g) P(MbO) = $2000 \times \frac{9}{41} = 439$ men are borderline obese in a sample of 2 000 men.

Grade 8 Mathematics Worksheet

Notice that we are looking at a sample that contains ONLY men. So the 59 results for females were removed from the sample.